Using Multiple Knowledge Sources for Word Sense Discrimination
نویسنده
چکیده
This paper addresses the problem of how to identify the intended meaning of individual words in unrestricted texts, without necessarily having access to complete representations of sentences. To discriminate senses, an understander can consider a diversity of information, including syntactic tags, word frequencies, collocations, semantic context, role-related expectations, and syntactic restrictions. However, current approaches make use of only small subsets of this information. Here we will describe how to use the whole range of information. Our discussion will include how the preference cues relate to general lexical and conceptual knowledge and to more specialized knowledge of collocations and contexts. We will describe a method of combining cues on the basis of their individual specificity, rather than a fixed ranking among cue-types. We will also discuss an application of the approach in a system that computes sense tags for arbitrary texts, even when it is unable to determine a single syntactic or semantic representation for some sentences.
منابع مشابه
6 Unsupervised corpus - based methods for WSD
This chapter focuses on unsupervised corpus-based methods of word sense discrimination that are knowledge-lean, and do not rely on external knowledge sources such as machine readable dictionaries, concept hierarchies, or sense-tagged text. They do not assign sense tags to words; rather, they discriminate among word meanings based on information found in unannotated corpora. This chapter reviews...
متن کامل6 Unsupervised Corpus - Based Methods for WSD 6 . 1
This chapter focuses on unsupervised corpus-based methods of word sense discrimination that are knowledge-lean, and do not rely on external knowledge sources such as machine readable dictionaries, concept hierarchies, or sense-tagged text. They do not assign sense tags to words; rather, they discriminate among word meanings based on information found in unannotated corpora. This chapter reviews...
متن کاملDiscriminating Among Word Meanings by Identifying Similar Contexts
Word sense discrimination is an unsupervised clustering problem, which seeks to discover which instances of a word/s are used in the same meaning. This is done strictly based on information found in raw corpora, without using any sense tagged text or other existing knowledge sources. Our particular focus is to systematically compare the efficacy of a range of lexical features, context represent...
متن کاملName of Faculty Adviser Signature of Faculty Advisor Date
Word sense discrimination is the problem of identifying different contexts that refer to the same meaning of an ambiguous word. For example, given multiple contexts that include the word ’sharp’, we would hope to discriminate between those that refer to an intellectual sharpness versus those that refer to a cutting sharpness. Our methodology is based on the strong contextual hypothesis of Mille...
متن کاملIntegrating Multiple Knowledge Sources to Disambiguate Word Sense: An Exemplar-Based Approach
In this paper, we present a new approach for word sense disambiguation (WSD) using an exemplar-based learning algorithm. This approach integrates a diverse set of knowledge sources to disambiguate word sense, including part of speech of neighboring words, morphological form, the unordered set of surrounding words, local collocations, and verb-object syntactic relation. We tested our WSD program...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Linguistics
دوره 18 شماره
صفحات -
تاریخ انتشار 1992